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Anti- BZ-Structure in Effect Algebras
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The definitions of sharply approximating effect algebras, anti-BZ-effect algebras, cen-
tral approximating effect algebras, and S-anti-BZ-effect algebras are given, the rela-
tionships between sharply approximating effect algebras and anti-BZ-effect algebras,
between central approximating effect algebras and anti-BZ-effect algebras are estab-
lished, and the set of anti-BZ-sharp elements in S-anti-BZ-effect algebras is proved to
be an orthomodular lattice.
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1. INTRODUCTION AND BASIC DEFINITIONS

Since in 1936 Birkhoff and von Neumann regarded the lattice of all closed
subspaces of a separable infinite dimensional Hilbert space which is an orthomod-
ular lattice as a proposition system for a quantum mechanical entity (R. Mikl´os,
1998), orthomodular lattices have been considered as a mathematical model for
a calculus of quantum logic. With the development of the theory of quantum
logics, effect algebras as a quantum structure which generalize orthomodular lat-
tices, orthomodular posets, and orthoalgebras, are also regarded as a mathematical
model of quantum logics (Fouliset al., 1992). The main advantage of an effect
algebra is that it can embody sharp or unsharp properties (Lahti and Maczynski,
1995). However, the shortcoming of it is that the set of sharp elements in a gen-
eral effect algebra is not an orthomodular lattice, not even an orthoalgebra, which
cannot meet the need of physical relevant systems. To avoid the shortcoming,
a BZ-structure was introduced and some properties were obtained (Cattaneo,
1997; Cattaneo and Nistico, 1989; Gudder, 1998a). For the same reason, in this
note, we introduce an anti-BZ-structure in effect algebras and get some good
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properties. We give the definitions of sharply approximating effect algebras, anti-
BZ-effect algebras, central approximating effect algebras, and S-anti-BZ-effect
algebras establish the relationship between sharply approximating effect algebras;
and anti-BZ-effect algebras, the relationship between central approximating effect
algebras and anti-BZ-effect algebras; and prove the set of anti-BZ-sharp elements
in S-anti-BZ-effect algebras is an orthomodular lattice. Since an S-dominating
effect algebra (Gudder, 1998b) is an S-anti-BZ-effect algebra, we conclude that
S-anti-BZ-effect algebras may be an abstract model for quantum logics in some
sense.

Definition 1.1. (Cattaneo and Nistico, 1989). Let (P, ≤, 0, 1,′) be a De Morgan
Poset. A B-complementation onP is a unary operation∼: P→ P that sat-
isfies: a ≤ a∼∼, a ≤ b⇒ b∼ ≤ a∼, a ∧ a∼ = 0, anda∼

′ = a∼∼. If ∼ is a B-
complementation onP, we call (P,≤, 0, 1,′,∼) aBZ-Poset.

Definition 1.2. (Foulis et al., 1992). A structure (P,⊕, 0, 1) is called an effect
algebra if 0,1 are two distinguished elements and⊕ is a partially defined binary
operation onP that satisfies the following conditions for anya, b, c ∈ P:

(E1)b⊕ a = a⊕ b.
(E2) (a⊕ b)⊕ c = a⊕ (b⊕ c).
(E3) For everya ∈ P, there exists a uniqueb ∈ P such thata⊕ b = 1 (we put

a′ = b).
(E4) If 1⊕ a is defined, thena = 0.
An orthoalgebra is an algebraic system (P, 0, 1,⊕) that satisfies (E1), (E2), (E3),

and
(E5): If a⊕ a exists, thena = 0.

Remark 1.3. Let a andb be two elements of an effect algebraP.

(i) a⊥ b iff a ≤ b′ iff a⊕ b is defined inP.
(ii) a ≤ b iff there exists an elementc ∈ P such thata⊕ c = b.
(iii) b is the orthocomplement ofa iff b is a unique element ofP such that

a⊕ b = 1 and it is writtena′.

Obviously, (P,≤, 0, 1,′) is a De Morgan poset.

Definition 1.4. (Gudder, 1998a). Let (P,≤, 0, 1,′) be a De Morgan Poset. An
elementa ∈ P is sharp ifa ∧ a′ = 0. PutPs = {a ∈ P|a ∧ a′ = 0}. Obviously, 0,
1,∈ Ps.

Example 1.5. (Lahti and Maczynski, 1995). LetH be a complex Hilbert space
and letε(H ) be the set of self-adjoint linear operators onH , whose inner product
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is 〈|〉 and satisfies∀φ ∈ H, 0≤ 〈Aφ|φ〉 ≤ ‖φ‖2 · ε(H ) is a poset with respect to
the partial orderingA1 ≤ A2 iff ∀φ ∈ H, 〈A1φ|φ〉 ≤ 〈A2φ|φ〉. Obviously, 0 is the
smallest element, 1 is the largest element onε(H ). For A, B ∈ ε(H ), we write
A⊥ B if A+ B ∈ ε(H ) and we defineA⊕ B = A+ B. If we defineA′ = 1− A
for A ∈ ε(H ), it is clear that (ε(H ),⊕, 0, 1) is an effect algebra which we call
a Hilbert space effect algebra. The familyε(H )s of all sharp elements is the set
P(H ) of all orthogonal projections onH .

Definition 1.6. (Gudder, 1998a). Let (P,≤ 0, 1,′) be a De Morgan Poset,P
is sharply dominating if everya ∈ P is dominated by a smallest sharp element
µ(a) ∈ Ps (i.e., (i) a ≤ µ(a), (ii) if a ≤ b ∈ Ps, thenµ(a) ≤ b).

Definition 1.7. (Gudder, 1998b). A sharply dominating De Morgan posetP is
called S-dominating DM-Poset ifa ∧ p exists for everya ∈ P, p ∈ Ps.

Lemma. 1.8. (Gudder, 1998a).Let P be an effect algebra and a∈ Ps. If b ∈ P
with a⊥ b then a⊕ b is a minimal upper bound for a and b.

Lemma. 1.9. (Fouliset al., 1992).An orthomodular poset is an orthalgebra P
that satisfies the following conditions:

For p, q ∈ P, if p⊥q, then p∨ q exists and p∨ q = p⊕ q.

Definition 1.10. (Greechieet al., 1995). For an effect algebra (P,⊕, 0, 1), an
elementz ∈ P is called central iff for everyx ∈ P there existx ∧ z andx ∧ z′

andx = (x ∧ z) ∨ (x ∧ z′). The setC(P) of all central elements ofP is called the
center ofP.

2. ANTI-BZ-EFFECT ALGEBRAS

Definition 2.1. Let P be a De Morgan Poset. A unary operation∗ : P −→ P is
called an anti-BZ-complementation if it satisfies

(i) a∗∗ ≤ a.
(ii) a ≤ b⇒ b∗ ≤ a∗.

(iii) a ∨ a∗ = 1.
(iv) a∗

′ = a∗∗.

If ∗ is an anti-B-complementation onP, we call (P,≤, 0, 1,∗, ′) an anti-BZ-Poset.

Example 2.2. The poset (ε(H ), 0, 1,∗,′ ) is an anti-BZ-Poset with respect to

(i) F ′ = 1− F , for all F ∈ ε(H ); and
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(ii) F∗ = EKer(1−F)⊥ = ERan(1−F). Where Ker(F) denotes the kernel of the
operatorF and Ran(F) denotes the closure of the Ran(F) of F , EM

denotes the projection onto the subspaceM of H .

An elementa in an anti-BZ-PosetP is anti-BZ-sharp relative to∗ if a = a∗∗.
Put P∗s = {a ∈ P|a = a∗∗}. Obviously,ε(H )∗s = P(H ).

It is easy to prove the following proposition.

Proposition 2.3. Let P be an anti-BZ-Poset. Then unary operation∗∗: P → P
satisfies the following properties (where we define 0∗ = 1).

(i) 1∗∗ = 1.
(ii) a∗∗ ≤ a, for all a ∈ P.

(iii) a ∗∗∗∗ = a∗∗, for all a ∈ P.
(iv) a ≤ b⇒ a∗∗ ≤ b∗∗, for a, b ∈ P.
(v) ((a∗∗)′)∗∗ = (a∗∗)′, for all a ∈ P.
(vi) a∗∗∧ (a∗∗)′ = 0, for all a ∈ P.

(vii) a ∨ (a∗∗)′ = 1, for all a ∈ P.

Obviously, the operator∗∗ is an interior operator by (i), (ii), (iii), and (iv).
Together with (v), we conclude that it is a universal quantifer (Halmos, 1962).

Conversely, we can construct an anti-BZ-poset by (i), (ii), (iv), (v), and (vii).

Proposition 2.4. Let (P,≤, 0, 1,′) be a De Morgan Poset with the mappingη:
P→ P satisfying the following conditions:

(i) η(1)= 1.
(ii) η(a)≤ a, for all a ∈ P.

(iii) a ≤ b⇒ η(a)≤ η(b), for a, b ∈ P.
(iv) η(η(a)′) = η(a)′, for all a ∈ P.
(v) a∨ η(a)′ = 1, for all a ∈ P.

Then (P,≤, 0, 1,′, η) is an anti-BZ-Poset, with respect to a∗ = η(a)′.

Proof: Leta, b ∈ P, a ≤ b, thenη(a) ≤ η(b) by (iii). Soη(b)′ ≤ η(a)′, i.e.,b∗ ≤
a∗. Sincea∗∗ = η(η(a)′)′ = η(a), thena∗∗ ≤ a by (ii). Obviously,a ∨ a∗ = a ∨
η(a)′ = 1. a∗∗ = η(a) = a∗′. Thus, (P,≤, 0, 1,′ , η) is an anti-BZ-Poset. ¤

Proposition 2.5. Let P be an anti-BZ-Poset. Then a∈ P∗s if and only if a′ = a∗.

Remark 2.6. If P is an anti-BZ-Poset, thenP∗s ⊆ Ps.
However, in general,P∗s 6= Ps. For instance, letP be an orthoalgebra, define

1∗ = 0, and for all p 6= 0, let p∗ = 1. Evidently, (P,≤, 0, 1,∗,′ ) is an anti-BZ
Poset. ButP∗s = {0, 1}, Ps = P.
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Lemma. 2.7. Let P be an anti-BZ-Poset.

(i) If a ∧ b exists in P, then (a∧ b)∗ = a∗ ∨ b∗.
(ii) If P ∗s = Ps, then the following statements are equivalent:
(1) a ∈ Ps, (2) a= a∗∗, (3) a′ = a∗.

Corollary 2.8. Let P be an anti-BZ-Poset with P∗s = Ps and let a, b ∈ Ps.

(i) If a ∧ b exists, then a∧ b ∈ Ps.
(ii) If a ∨ b exists, then a∨ b ∈ Ps.

Proof: (i) Suppose thata ∧ bexists. Applying Lemma 2.7(i), we have (a ∧ b)∗ =
a∗ ∨ b∗ = a′ ∨ b′ = (a ∧ b)′. By Lemma 2.7(ii), we have thata ∧ b ∈ P∗s = Ps.

(ii) By (a ∨ b)′ = a′ ∧ b′. ¤

Definition 2.9. Let (P,⊕, 0, 1) be an effect algebra.P is sharply approximating
if for every a ∈ P is approximated by a largest sharp elementν(a) ∈ Ps (i.e., (i)
ν(a) ≤ a, (ii) if b ≤ a andb ∈ Ps, thenb ≤ ν(a)).

Remark 2.10. Let (P,⊕, 0, 1) be an effect algebra. Ifa ∈ Ps, thena = ν(a) =
µ(a), a′ = ν(a′) = µ(a′).

Example 2.11. ε(H ) is a sharply approximating effect algebra. Indeed, for all
F ∈ ε(H ), ν(F) = EKer (1−F). Obviously, ν(F) ∈ P(H ), and since for allx ∈
H, 〈ν(F)x|x〉 = ‖x1‖2 ≤ 〈Fx|x〉 = ‖x1‖2+ 〈Fx2|2〉, wherex1 ∈ Ker(1− F), x2

∈Ker(1− F)⊥, which impliesν(F) ≤ F . If G ∈ P(H ), andG ≤ F , then 1− F ≤
1− G, so Ker(1− G) ≤ Ker(1− F), i.e.,G = ERan(Ge) = EKer(1−G) ≤ EKer (1−F)

= ν(F).

Theorem 2.12. Let P be a De Morgan Poset. Then P is sharply approximating
if and only if it is sharply dominating.

Proof: “Only if part.” For everya′ ∈ P, there existsν(a′) ≤ a′ sinceP is sharply
approximating. So,a′′ ≤ (ν(a′))′, i.e.,a ≤ (ν(a′))′. Obviously, (ν(a′))′ ∈ Ps. For
everyc ∈ Ps, a ≤ c, then,c′ ≤ a′. So,c′ ≤ ν(a′) by c′ ∈ Ps. Thus (ν(a′))′ ≤ c′′ =
c. i.e.,µ(a) = (ν(a′))′.

“If part.” For everya ∈ P, there existsµ(a) ∈ Ps such thata ≤ µ(a). Simi-
larly, for a′, a′ ≤ µ(a′). Then (µ(a′))′ ≤ a′′ = a. Obviously, (µ(a′))′ ∈ Ps. For ev-
eryc ∈ Ps, c ≤ a, thena′ ≤ c′, which impliesµ(a′) ≤ c′. Thus,c′′ = c ≤ (µ(a′))′.
Hence,ν(a) = (µ(a′))′. ¤

Proposition 2.13. Let P be a sharply approximating De Morgan poset.ν :
P −→ P is the sharply approximating mapping, andµ : P −→ P is the sharply
dominating mapping. Then(ν, µ) is a pair of adjoint.
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Proof: Obviously, for everya, b ∈ P, a ≤ b, thenν(a) ≤ ν(b), andµ(a) ≤ µ(b).
i.e.,ν andµ are both monotone. For everya ∈ P, µ(ν(a)) = ν(a) ≤ a, ν(µ(a)) =
µ(a) ≥ a. So, (ν, µ) is a pair of adjoint.

Clearly,v preserves existing meet,µ preserves existing join. ¤

From this proposition, we see the necessity of rough approximation inSBZ-
algebra structure (Cattaneo, 1997).

Theorem 2.14. Let P be a sharply approximating De Morgan Poset. Then there
exists a unique anti-B-complementation∗ (resp., B-complementation∼) on P
such that P∗s = Ps(P∼s = Ps).

Conversely, if P is an anti-BZ- Poset (resp., BZ-Poset) in which P∗
s = Ps

(resp., P∼s = Ps), then P is sharply approximating and a∗ = (ν(a))′ (resp., a∼ =
ν(a′)), for all a ∈ Ps.

Proof: (i) Let P be a sharply approximating De Morgan Poset.ν : P→ P is the
sharply approximating mapping. Obviously,ν(1)= 1 andν(a) ≤ a. Leta, b ∈ P,
if a ≤ b, thenν(a) ≤ ν(b). Since for everya ∈ Ps, ν(a) = a. Thenν(ν(a)′) =
ν(a)′ by ν(a)′ ∈ Ps. Evidently,a ∨ ν(a)′ = 1 by ν(a) ≤ a andν(a) ∈ Ps. Hence,
definea∗ = ν(a)′. Then (P,≤, 0, 1,∗,′ ) is an anti-BZ-Poset by Proposition 2.4.

To showP∗s = Ps.P∗s ⊆ Ps by Remark 2.6. Assume thata ∈ Ps. Thena =
ν(a) such thata′ = a∗. Soa ∈ P∗s . Thus,P∗s = Ps.

For uniqueness, suppose1 is an anti-B-complementation onP such that
P1

s = Ps. Sincea11 = a1
′
is the largest sharp element that approximatinga, we

havea11 = a1
′ ≤ a. Forb ∈ Ps, b ≤ a, thena1 ≤ b1, b = b11 = b1

′ ≤ a1
′ =

a11. Soa1
′ = ν(a), i.e.,a1 = (ν(a))′ = a∗. Hence,∗ is unique.

(ii) For a ∈ P, a∗∗ ∈ Ps anda∗∗ ≤ a. If b ∈ Ps andb ≤ a, thenb = b∗∗ ≤
a∗∗ ≤ a. Soa∗∗ = ν(a). ThenP is sharply approximating and (ν(a))′ = (a∗∗)′ =
a∗∗∗ = a∗. ¤

For another case, we can refer to Gudder (1998a).

Corollary 2.15. Let P be a sharply approximating De Morgan Poset.ν : P −→
P is the sharply approximating mapping. Let a∗ = ν(a)′, a∼ = ν(a′). Then,

(i) ∼∗ : P −→ P is an interior operator.
(ii) ∼∗ : P −→ P is a closure operator.
(iii) For every a∈ P, a∗∼∗ = a∗, a∼∗∼ = a∼.
(iv) For every a∈ Ps, a∗∼∗ = a∼∗∼ = a′.

Definition 2.16. If ( P, 0, 1,⊕) is an effect algebra and∗ is an anti-B-
complementation onP, we call (P, 0, 1,⊕, ∗) an anti-BZ-effect algebra. In par-
ticular, (P,≤, 0, 1,′ , ∗) is an anti-BZ-Poset. By Theorem 2.14, we can obtain.
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Corollary 2.17. (i) If P is a sharply approximating effect algebra, then there
exists a unique anti-B-complementation∗ on P such that(P, 0, 1,⊕, ∗) is an
anti-BZ-effect algebra and P∗s = Ps.

(ii) If P is an anti-BZ-effect algebra in which P∗s = Ps, then P is sharply
approximating and a∗ = (ν(a))′, for all a ∈ P.

Corollary 2.18. Suppose that P is a sharply approximating effect algebra. Let
a, b ∈ Ps,

(i) If a ∧ b exists, then a∧ b ∈ Ps.
(ii) If a ∨ b exists, then a∨ b ∈ Ps.

Proof: By Corollary 2.17 and Corollary 2.8. ¤

Proposition 2.19. Let (P,⊕, *, 0, 1) be an anti-BZ-effect algebra, then P∗s is an
orthoalgebra.

Proof: Obviously, 0, 1∈ P∗s , a ∈ P∗s iff a′ ∈ P∗s . For a, b ∈ P∗s , a⊥ b, then
a, b ≤ (a⊕ b), i.e., (a⊕ b)∗ ≤ a∗, b∗. Hence,a = a∗

′ ≤ (a⊕ b)∗
′ = (a⊕ b)∗∗ ≤

(a⊕ b), b = b∗
′ ≤ (a⊕ b)∗

′ = (a⊕ b)∗∗ ≤ (a⊕ b), thus a⊕ b = (a⊕ b)∗∗ by
Lemma 1.8. Ifa⊕ a exists, i.e.,a ≤ a′, thena = 0 by P∗s ⊆ Ps. ¤

Corollary 2.20. If P is a sharply approximating effect algebra, then Ps is an
orthoalgebra in P.

Proof: By Corollary 2.17. ¤

Definition 2.21. Let P be an effect algebra.P is central approximating if every
elementa ∈ P is approximated by a largest central elementγ (a).

Remark 2.22. There exists a central approximating effect algebra but not a sharply
approximating effect algebra.

For example (Riecanova, 2001), letE = {0, a, b, a⊕ a, b⊕ b, a⊕ b, a′, b′,
(a⊕ a)′, (b⊕ b)′, (a⊕ b)′, 1} be an effect algebra in whicha, b, (a⊕ a)′, (b⊕
b)′, (a⊕ b)′ are atoms. Moreover,a′ = a⊕ (a⊕ a)′ = b⊕ (a⊕ b)′ andb′ = a⊕
(a⊕ b)′ = b⊕ (b⊕ b)′. Further for everyx ∈ P, x ⊕ x′ = 1 and 0⊕ x = x. Then
Ps = {a⊕ a, b⊕ b, a⊕ b, (a⊕ a)′, (b⊕ b)′, (a⊕ b)′, 0, 1}. C(P) = {0, 1}. Ob-
viously, for elementa′ ∈ P, there does not exist a largest sharp element approxi-
mating it. But it is easy to checkγ (a) = 0 for everya ∈ P.

Conversely, a sharply approximating effect algebra may not be a central ap-
proximating effect algebra. Indeed, ifP is an orthomodular lattice, then for every
elementa ∈ P, ν(a) = a. But γ (a) may not equala unlessa ∈ C(P).



P1: KEF

International Journal of Theoretical Physics [ijtp] pp1183-ijtp-485166 April 29, 2004 0:46 Style file version May 30th, 2002

366 Yun, Yongming, and Maoyin

Theorem 2.23. (i) If P is a central approximating effect algebra. Then there
exists a unique anti-B-complementation∗ on P such that (P, 0, 1,⊕, ∗) is an
anti-BZ-effect algebra and P∗s = C(P).

(ii) If P is an anti-BZ-effect algebra in which P∗s = C(P), then P is central
approximating and a∗ = (γ (a))′, for all a ∈ P.

Proof: (i) Let P be a central approximating effect algebra.γ : P→ P is the
central approximating mapping. Obviously,γ (1)= 1 andγ (a) ≤ a. Leta, b ∈ P,
if a ≤ b, thenγ (a) ≤ γ (b). Since for everya ∈ C(P), γ (a) = a, thenγ (γ (a)′) =
γ (a)′ by γ (a)′ ∈ C(P). Evidently,a ∨ γ (a)′ = 1 by γ (a) ≤ a andγ (a) ∈ C(P).
Hence, definea∗ = γ (a)′. Then (P,≤, 0, 1,∗,′ ) is an anti-BZ-effect algebra by
Proposition 2.4.

Sincea ∈ P∗s iff a∗∗ = a iff a∗∗ = γ (γ (a)′)′ = γ (a) = a iff a ∈ C(P). Thus,
P∗s = C(P).

We can prove * is unique similar to Theorem 2.13.
(ii) We havea∗∗ ≤ a anda∗∗ ∈ C(P). Supposeb ∈ C(P) andb ≤ a. Then

b = b∗∗ ≤ a∗∗ ≤ a. Hence,γ (a) = a∗∗. ¤

Corollary 2.24. If P is a central approximating effect algebra. Then P∗s is a
Boolean subalgebra.

3. S-ANTI-BZ-EFFECT ALGEBRAS

Definition 3.1. A De Morgan PosetP is called an S-De Morgan Poset if it satisfies
the following condition: (S)a ∧ p exists for alla ∈ P, p ∈ Ps. (It follows from
De Morgan’s laws thata ∨ p exists.)

Definition 3.2. An effect algebra is called an S-effect algebra if it satisfies S
condition (similarly for S-anti-BZ-effect algebras).

Proposition 3.3. Let P be an S-effect algebra, and let a∈ P, p∈ Ps.

(i) If a ⊥ p, then a∨ p = a⊕ p.
(ii) If a ′ ⊥ p′, then a∧ p = (a′ ⊕ p′)′.

(iii) If a ≤ p, then a⊕ (p∧ a′) = p.
(iv) If p ≤ a, then p∨ (a ∧ p′) = a.

Proof: (i) Let a ⊥ p, thena ≤ p′ anda ∧ p = 0 by p ∈ Ps. Sincea ∨ p exists,
thena⊕ p = (a ∨ p)⊕ (a ∧ p) = a ∨ p (Greechieet al., 1995).

(ii) If a′ ⊥ p′, then (a′ ⊕ p′)′ = (a′ ∨ p′)′ = a ∧ p by (i) and De Morgan
law.
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(iii) Sincea ≤ p, thenp = a⊕ (a⊕ p′)′ = a⊕ (a ∨ p′)′ = a⊕ (p∧ a′) by
(i) and the effect algebra orthomodular identity.

(iv) Sincep ≤ a, thena = p⊕ (p⊕ a′)′ = p⊕ (a′ ∨ p)′ = p⊕ (a ∧ p′) =
p∨ (a ∧ p′). ¤

Theorem 3.4. Let P be an S-anti-BZ-effect algebra, then P∗s is an orthomodular
lattice.

Proof: Obviously,P∗s is an orthomodular poset by Proposition 2.15 and Proposi-
tion 3.3(i). We only have to proveP∗s is a sublattice under the restriction order ofP.
For alla, b ∈ P∗s , (a ∧ b)∗∗ = a ∧ bby ∗∗ is an interior operator. Since (a ∨ b)∗∗ =
(a′ ∧ b′)′∗∗ = (a∗ ∧ b∗)

′∗∗ = (a∗
′ ∨ b∗

′
)∗∗ = (a

′∗ ∨ b
′∗)∗∗ = (a′ ∧ b′)∗∗∗ = (a′ ∧

b′)∗ = a ∨ b. So P∗s is a sublattice. Thus,P∗s is an orthomodular lattice. ¤

Corollary 3.5. (Gudder, 1998b).Let P be an S-dominating effect algebra, then
Ps is an orthomodular lattice.

Proof: Evidently, P is sharply approximating (sharply dominating). Hence,P
is an anti-BZ-effect with P∗s = Ps by Corollary 2.17. ThenPs is an orthomodular
lattice by Theorem 3.4. ¤

Therefore, we can obtain the classical conclusion.

Corollary 3.6. P(H) is an orthomodular lattice.

Proof: Sinceε(H ) is S-dominating (Gudder, 1998b). ¤
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